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The path integral for arbitrary fermion sectors in 
supersymmetric quantum mechanics 

Michael O’Connoi 
Department 01 Physics, Loamis Laboratory, University of Illinois at Urbana-Champaign, 
110 W Green St.. Urbana, IL 61801, USA 

Received 26 June 1990 

Abstract. I show how to obtain the kernel for arbitrary fermion Sectors in supersymmetric 
quantum mechanics by applying standard coordinate space functional integral techniques 
to the coherent state lermionic path integral. 

1. Introduction 

The path integral has played an important role in the development of quantum field 
theory and other branches of physics [I-31. While the theory of the bosonic path 
integral is well defined, the fermionic path integral is generally not so well defined. 
Usually one evaluates these fermionic path integrals formally by solving an eigenvalue 
problem using appropriate boundary conditions and using the eigenvalues to define 
a determinant. 

In this paper I will show how standard coordinate space functional integral 
techniques applied to the coherent state fermionic path integral [4] leads to physically 
important results, such as the fermionic propagator, and to the evaluation of deter- 
minants without solving the corresponding eigenvalue problem?. I apply these results 
to supersymmetric quantum mechanics [6 ] .  For supersymmetric quantum mechanics 
on a curved manifold (the supersymmetric nonlinear u-model [7]) there is a four- 
fermion interaction term, and the path integral is no longer simply a determinant. 
Nevertheless, the functional integral techniques will be able to deal with this four- 
fermion term and, of equal importance, I will be able to write the short-time kernel 
which propagates solutions of the Schrodinger equation for any fermion sector, and 
not just for the zero and full fermion sectors which has been done previously [S-lo]. 

The paper will be organized as follows. In section 2, I give a general discussion of 
the quadratic fermionic path integral. I then apply the results to supersymmetric 
quantum mechanics on a flat manifold. In section 3, I treat supersymmetric quantum 
mechanics on a curved manifold. I show how to obtain an approximate fermionic 
generating functional which allows one to.deal with the four fermion term, and from 
which one can obtain the short time kernel and the ‘top form’ for the evaluation of 
the Witten index. 

T For a similar discussion of the fermionic path integral see [ 5 ]  
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890 M O’Connor 

2. The quadratic fermionic path integral 

In this section I show how to apply standard coordinate space functional integral 
techniques [ l l ]  to the quadratic fermionic path integral. I then apply these results to 
supersymmetric quantum mechanics on a flat manifold, and find that one can propagate 
all of the supersymmetric states from the different fermionic sectors. 

By way of introducing my notation I reproduce some standard results for the 
fermionic generating functional. Consider a general quadratic fermionic path integral 
with fermionic sources v*”(f )  and q.(f). The fermionic generating functional is 

11 x exp[f [ d f  [ JI*” (i  8: -A! - BE..q“) + v * “ $ ~  + JI*”v, 

(2.1) 

Consider a fermionic generating functional 2, which is the path integral (2.1) in which 
A: = 0 and BE,= 0. By considering solutions of the resulting classical equations of 
motion which have retarded boundary conditions, i.e. &(I) = i df’O(f - f’)v,( f’), then 

dtdf’n*”(f)O(f-f’)q,(f’) (2.2) 

It then follows that Z[v*, 771 can be obtained from Z[v* ,  771” in the following fashion: 

where 

Carrying out the expansion in (2.3) we obtain the general expression for the quadratic 
fermionic generating functional of (2.1) 

Z[v*, ~]=exp(- ; [  d f  d f ’ v * ’ ( f ) F ; ( f - f ’ ) v ” ( , ’ ) ) Z [ 7 7 ~ ,  vlln*-.,lo. (2.4) 

In (2.4) F:( I - f’) is the fermionic propagator and has the following formal expressiont: 

F;( f - f’) = O(f - f ’ ) T (  exp I,: df,{-iAL[q(f,)] -iB;,,[q(f,),q”(,,)]). (2.5) 

By setting v*=v=O in (2.1) it follows that Z[v*, ~ ] l n . = , , - u  can be expressed as a 
determinant (with retarded boundary conditions) which is 

Z[v*, ~ ] l , , . = ~ = ~ = d e t  8: -A:[q(f)]- B p , [ q ( f ) ] q ”  8 ( f  - 1’) > I  
11 fi fi f i2  

= exp[f [ df (i A , + i  B,” ,q”+-gg””B~,B ,” ,  8 . 

t 1 am using the notation c A t  = [ e A ] :  i f  any indices remain uncontracted. 
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This shows that one can calculate determinants without solving the corresponding 
formal eigenvalue problem. It should be noted that in  obtaining (2.6) I used the fact 
that for quantum paths the correlation (OlT~y(t)q"(f')~O)=ihg*Y[q(f)]8(f- f ' ) ,  and 
also the following two identities: O ( t - f ' ) O ( f ' - f ) = O ,  and O ( O ) = f .  

Having obtained the generating functional for a general quadratic fermionic path 
integral, I will use it to propagate states in the different fermionic sectors of supersym- 
metric quantum mechanics.. Before doing this I will review supersymmetric quantum 
mechanics on a fiat N--dimensionai manifold [6] and find the Schrodinger equation 
for the supersymmetric states. The Lagrangian for supersymmetric quantum mechanics 
on a flat N-dimensional manifold described in Cartesian coordinates is 

L= fn,,q"qh - f t , " h ( ~ , ~ ) ( ~ , ~ )  + $*" i - 8: - v h ' ~ . ~ , v  $,,. (2.7) ( ,4 ) 
*L- A-:- ,,.-.:, .... :.~. , v p u u  ~ U ~ ~ M ~ U U U ,  UK ~ U ~ C L J ~ U U ~ ~ ~ L ~  IL n a u ~ ~ ~ u i i i a i i  is 

H = L  2n oh paph  hob(^,^)(^,^) + v b c ( ~ a ~ c ~ ) ( $ * n $ h  -fGh$*.). (2.8) 
The supersy2metric states on whicb the Hamiltonian acts are of the form * [ q ( f ) ] =  
A,,....,[q(t)]$*"' . . . #*"*IO), where $*"I and $,,,are creation and annihilation operators 
and 10) is the fermionic vacuum for which #",,lO)=O. If p is even (odd) then the 
supersymmetric state is a boson (fermion). The Schrodinger equation for the supersym- 
metric states is 

P 

(2.9) 

Note that for the zero fermion sector the Hamiltonian is diagonal in tensor indices 
and the propagator for the zero fermion sector is 

1 f i 2  h 
i f i J A . . . m p  = (-2 nnhJ ,J ,+ tn" ' (J , v ) (J ,V) -2  nah(J.JbV) Am, ...+ 

+ f i  1 ?ab(J,AJaV)Am ,... "*,... 
* = I  

(2.10) 11 J D[ql e x p [ i  j df(fn"hq"q"fn"h(J.v)(J,.v)+i f i  & J , J ~ V )  . 

For the general ,n-fermion sectnr t h e  Hamiltnnian i n  no longer diagona! and my 
motivation was to find the generalization of (2.10) which will allow one to propagate 
supersymmetric states from any fermionic sector. The kernel for the propagation of 
supersymmetric states can be obtained from the fermionic generating functional as 
follows: 

A,; J q >  fr]= 1 dqo KE;:::!,:(a! $; qo, fn)Ag;...nn[ao, lo!. (2.11) 
J 

In  the above expression the kernel Kf;:::!;(q,  C r ;  qo. to) is the path integral 

where LB is the bosonic part of the supersymmetric Lagrangian, and 

(2.13) 
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Thus once one has the fermionic generating functional for supersymmetric quantum 
mechanics one can use (2.1 1)-(2.13) to propagatesolutions of the Schrodinger equation 
for any fermionic sector. Note that for the quadratic fermionic path integral there is 
no self-interaction of the fermionic propagators and hence one has the following 
factorization: 

M!::::E;Ap ,... p p  = Z[v*, ?~ll,p=,,=oF!;((,- (01 . . . F ! ; ( t f -  t d A p  ,... 0,. (2.14) 
A..- Î_ :..*..-..--+ tlrr &-,.-...:....:,. ..__I C & / r  - I  ! ̂^ ---- ""̂t:.." .I... .I:-- --.- 
u t ~  ~ n u  U ~ C L ~ L C L  LUC I G ~ I I I I U I ~ I C  p v p a ~ a r v r  1 = ; i t ,  ~ t o ,  cza pupagauu6 LU= U I ~ C I S K  

index p, at time to to the discrete index a, at time tp  

ing functional is 
Returning to the supersymmetric quantum mechanics of (2.7), the fermionic generat- 

d t  dt '  77*"(t)F:(f-f')77h(f') 

where the fermionic propagator is 

(2.15) 

(2.16) 

To show that (2.11) does in fact lead to the Schrodinger equation, perform the standard 
technique of expanding the path integral to first order in time for an infinitesimal time 
step [ l ,  121. I will given an explicit example; for ease of calculation I choose the 
one-fermion sector AJq(t ) ] .  Expanding to first order in time 

x ( s , - i~ '~Ar(J ,J ,V))A,[q , ,  to]  (2.17) 

which can be shown to satisfy the Schrodinger equation (2.9) when the results of 
appendix A are used. 

I end this section by considering the supersymmetric quantum mechanics given by 
the Lagrangian 

This is equivalent to the supersymmetric system of (2.7) in which the superpotential 
has been set to zero, and a curvilinear coordinate system is used instead of the usual 
Cartesian coordinates. From (2.5) and (2.6) 

F o ( r -  !'! = e!!- !')T(exn 1,; d ! , ! r , , [ 4 ! t : ) ! q ~ c r , , 1 )  (2.19) 
\ - - ~ =  ~ ~ " ' 1  - *\. 

and 
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By expanding to first order in time (using the results of appendix A) it can be shown 
that (2.11) leads to the Schrodinger equation 

(2.21) 
f i *  

i*J,A, ,... -zg’”V,V. .A U , . . . O n .  

3. The quartic fermionic path integral 

The supersymmetric nonlinear u-model in (0-1) dimensions [7] is an example of 
supersymmetric quantum mechanics which contains a four-fermion interaction term. 
Therefore the fermionic propagators will no longer factorize as in the quadratic theory, 
and one can no longer equate the fermionic path integral with a determinant, as is 
usually done in the quadratic case. 

In this section I show how to develop the standard coordinate space functional 
technique of section 2, to deal with the quartic fermionic path integral. 1 will be able 
to find a short time approximation for the fermionic generating functional, from which 
one can obtain solutions of the Schrodinger equation in any fermion sector, by use of 
the formalism of section 2. I will also show that one can obtain the Witten index from 
this short-time fermionic generating functional. 

To start with I give the Lagrangian for the supersymmetric nonlinear u-model and 
outline how to obtain the appropriate fermionic generating functional Z,,[q*, q]. The 
Lagrangian for the supersymmetric nonlinear u-model is 

The fermionic generating functional Z,[v*, 71 can be obtained from the fermionic 
generating functional for supersymmetric quantum mechanics on a flat manifold as 
follows: 

where 

and Z[v*, 771 has contributions from (2.19) and (2.20). In a straightforward manner 

where LF is the fermionic part of the supersymmetric Lagrangian equation (3.1). The 
kernel for the propagation of the zero-fermion sector is given by 

j Dlql exp[;j dt(is,,.4’4’)]Z.,[n*, v l l + n = ~ .  (3.4) 

This is exactly the kernel for a non-relativistic point particle moving on a curved 
manifold [13]. Therefore the zero fermion sector for the nonlinear u-model is a 
non-relativistic point particle on a curved background. 
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The fermionic generating functional of (3.2) can be expressed as the product of 
2j-point generating functionals (see appendix B for notation), 

m 

ZJ?*, ?I = n Z Y T ~ * ,  (3.5) 

In appendix B I outline how to obtain the different 2j-point generating functionals by 
use of the recurrence relations satisfied by the Green functions. In particular i t  is 
areued that one can obtain a physical fermionic senerating functional by finding the 
first two terms in this product. The argument is as follows: in the Schrodinger picture 
we require that the kernel propagate the solutions of the Schrodinger equation. It is 
well known that in the short-time limit one need only keep terms up to order O ( A f )  
in our kernel. Now our generating functional Z?’[?*, 71 has lowest order O ( A f )  (after 
the fermionic sources have been removed by differentiation) and thus contributes to 
the short-time kernel. For Z!1”[7*, 71, where j >  2, these 2j-point generating func- 
tionals will have lowest order O(At*)  where k 2 2, and thus they do not contribute to 
the short-time kernel. Hence the generating functional can be approximated by the 
truncated product 

where 

j = ,  

“*, III=z?’[l+, 171Z‘4’[?*. 71 (3.6) 

Z“[T*,  q ] = e x p  -- d f  df’~*8(f)G;(f-f’)t)s(f’) Z,[q*, 711,,.=.l=a (3.7) ( :I 1 
( :*I 

and 

Z?’[q*, 7 ] = e x p  -- dr dr‘df, d f ~ d f ~ d f ~ ? * ~ ( f , ) G ~ ( f , - f ) ? * ” ( r ~ ) G ~ ( f ~ - f )  

\ 
(3.8) 

It is interesting to note that the identity O ( f - f ‘ ) O ( f ’ - f ) = O  leads to considerable 
simplification of the Feynman diagrams. For example the ‘dressed’ fermionic propa- 
gator G: for the nonlinear u-model can be expressed as the sum of propagators F r  
of the quadratic theory given by (2.19) in which one sums over only one infinite series 
o i  ioops (see figure 1 j. 

). x D,,P”[q(t), q(t’)lGz(t’- fJvy( f i )G; ( f ’ -  b)n.,(tJ 

The infinite series can be summed and the fermionic propagator is 
ih  

G t ( f -  f’) = O ( t -  f’)T[exp 1,; df,(  ~ ~ J d h ) 1 4 m ( h )  -z RXq(fJ l ) ] .  (3.9) 

Also the ‘dressed’ four-fermion vertex D,. ,P”[q( f ) ,q ( f ’ ) ]  (which is given in (B8)  of 
appendix E) contains a sum over only one infinite series of loops of the form shown 
in figure 2. 

+= + o_ + OO.... 
Figure I. Fermionic propagator. 

+=++++ ioq- + .  .. 
Figure 2. Four-fermion vertex. 
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Using the machinery developed in section 2, and the fermionic generating functional 
Z,,[?*, 7]= Z?’[?*, ?]Zp’[?* ,  71 the Schrodinger equation for the supersymmetric 
wavefunctions is found to be equivalent to the Laplacian acting on differential p-forms, 
which is the geometrical interpretation of supersymmetric quantum mechanics [71. 
That is, the Schrodinger equation is 

(3.10) 
h2 

ifi &A, ,... = - (d  + S)2A, ,... Cln 2 

where ( d + S ) ’  is the Laplacian acting on differential p-forms given by [14]: 

(d+8)2Ae, . . .mp 
r 

= - g ” ” V , V A  ,... 1 RZAAmt...eA.,*m */,... 
A = ,  

In [15,16] it was shown that the Witten index Tr(-l)F can be regularized by a 
supersymmetric path integral in imaginary time, where both the bosonic and fermionic 
path integrals have periodic boundary conditions. I will show that for a two-dimensional 
closed compact manifold, the truncated fermionic generating functional Z,[?*, 771 = 
Z:’[?*, 7]2f1[7*, 73 can be used to regularize Tr(-l)F. Thus 

Tr(-l)F= D [ q ] [ M - M : + M : ; > ]  e x p ( - i /  df(fg,,q’q”) . (3.12) 

In the above expression the bosonic path integral has periodic boundary conditions, 
and is over imaginary time. Also note that I have explicitly taken the trace for each 
of the fermionic sectors; the minus sign for the one fermion sector is due to the operator 

One can use the standard arguments to find the major contribution to the 
imaginary time path integral with periodic boundary conditions [ l ,  21. The major 
contributions will come from the stationary paths. Thus 

j 1 

(3.13) 

In (3.13) the tildes indicate that q” has been set t o  zero in the fermionic propagator 
G;( f -  1‘) of (3.9) in accordance with the above result that the major contributions 
are obtained from the stationary paths. Now T I ( - I ) ~  is a topological invariant; hence 
in (3.13) one can perform a short-time expansion and look for the time-independent 
term, giving 

which (up to a sign) is the Gauss-Bonnet-Chern-Avez formula [I71 for the Euler 
character of a closed compact two-dimensional manifold. 

To generalize the above calculation from two to N dimensions one has 

Of course to show that (3.15) does indeed give the correct Euler character one would 
have to calculate the different 2j-point generating functionals and show that to order 
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O(AfN'2) that all the terms cancel except for the topological Euler character. m i s  
would be very tedious, but would constitute a proof of the index theorem for a De 
Rham complex. 

Instead of the above generalization to N-dimensional manifolds I would like to 
present the following heuristic generalization. Note that Z!:'[v*.  q ]  contains the 'top 
form', to be explained below. So Z64'Top[~)7*, 71 will be the only fermionic generating 
functional required to obtain the Euler character. The fermionic generating functionals 
can be expanded in powers of the short time A t  and in  powers of h. However Tr(- l )F 
is a topological invariant and is independent of both A f  and h, hence one can choose 
to expand the fermionic generating functionals in the short time A f  keeping terms up 
to order O(Af) (after the fermionic sources have been removed by diffeientiation). 
Thus as before the infinite product becomes truncated and Z,,[T*, v ] =  
~ i i , " [ ~ * ~  ? ! i : 4 ' [ ~ * ~  ?!. Next perform a small h expansion to obtain 

i?'[ v*, 771 + exp d l  dt '  q*"( f )  e( f - f') (3.16) 

and 

i',"'[tl*, v l + z p [ v * ,  771 

(3.17) 

~ ' ~ I T o P  " [Y*> vll+.)=o (3.18) 

where one performs a short-time expansion and look for the term independent of both 
A t  and f i .  This leads to the result Tr(-l)F=(-1)"X(M2"). where N = 2 m  is the 
dimension of the closed compact manifold, and ,y(M2"') is the Euler character, given 
by the Gauss-Bonnet-Chern-Avez formula 

In conclusion I have shown how the fermionic generating functional obtained from 
the fermionic path integral can give the physically important quantities. When applied 
to supersymmetric quantum mechanics on a curved manifold one can deal with the 
four fermion interaction term and obtain the fermionic propagator, which leads to the 
kernel for any fermion sector. 
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Appendix A 

In this appendix I shall give the Schrodinger equation associated with the path integral. 
I follow the standard procedure [ l ,  121 for expanding the path integral to first order 
in time for an infinitesimal time step. It is known that the path integral is the continuum 
limit of the mid-point discrete path integral, and that the mid-point discrete path 
integral corresponds to a Weyl ordered Hamiltonian [18]. Thus expanding a path 
integral to order O(At) gives the general form 

A i  A i  
d N A q g ” * ( q )  
(27rihAi) N / *  

where as usual A i  = i - f , ,  Aq’ = q’ - q; ,  and A,( 4) means that the function A ,  is 
evaluated at the mid-point f q + f q o .  By a standard expansion technique [ I ,  121 the 
expression in ( A l )  is seen to lead to the Schrodinger equation 

iha ,V= HT (A21 

where the Hamiltonian is Weyl ordered and has the form 

H = [ f g * ” P , , P , l ~  + a[P,g’”A,]w +pC. 

[Iw is used to represent the Weyl ordering of operators and, in particular, 

[- :g’“ p p p Y 3 “ - 6  - I p  p g ’ ” + I  Y ,g  * E  ‘PUP“+aP*g’”P” 
(A41 

[P,g””A.lW =fP,g’”A..+fg’”A,P,. 

A useful application of the above, which is used many times in the paper, is the 
expression of the form 

This leads to the Schrodinger equation 

where the identity 

has been used 
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Appendix B 

In this appendix I will derive the fermionic generating functional from which one can 
obtain the kernel for the propagation of solutions to the Schrodinger equation. For 
supersymmetric quantum mechanics on a curved manifold there is a quartic fermion 
interaction term, therefore the fermionic propagators will no longer factorize as they 
do for the Gaussian theory. 

One can obtain the appropriate generating functional by considering the classical 
equations of motion satisfied by the generating functional, i.e. the Dyson-Schwinger 
equation. I do not solve for the generating functional which satisfies the Dyson- 
Schwinger equation, but instead obtain an approximate generating functional by solving 
the first two recurrence relations for Green functions which are obtained from the 
Dyson-Schwinger equation by differentiating with respect to q* and 11 at ?* = q = 0. 
I will show that up to first order in time (all that is required to for the short time 
propagation of solutions to the Schrodinger equation) only the four-point fermionic 
generating functional is required. 

The first recurrence relation for the fermionic Green function is 

Where in (6S/6JI* '( f)), ,  the fermionic variables are replaced by the operators 
(-ih6/6q,.) and (-ihS/Sq*") and is explicitly given by 

Its solution is the two-point fermionic generating functional 

CAP\  - " L L  *, c A ,  U*" ,  A " - * & . < # l c " < ' - * ' \ " .  ' I  \.,-c\c J f I " \ B  ,A\ I (a?) I 
%-Wr-* - 1 -  7 r - *  -11 
&r L ' f  , l f J - & w t r f  , ' f J lv *=q=O 

where the fermionic propagator is given by 

(84)  
ih 

G:(t-f')=B(f-f')T r ; , [ q ( f l ) ] q " ( f , ) - , R : [ q ( t , ) l  

and Z!,?'[q*, q]l,+n=u is given in (3.3). 
The second recurrence relation for the Green functions is 

x Z.,[?*. ?l!7.=7=',=0. (B5) 

The solution of this Green function equation will contain a four-point fermionic general 
functional. The solution of the Green function equation (B5) is the required fermionic 
generating functional that can be used to obtain the kernel for the Schrodinger equation. 
The generating functional has the form 

Z,,[?*, nl-z!:'[rl*, tllZi"[11*. 111 (86) 
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where the four-point functional is 

Zy’[v*,v]=exp -- 
I 

dt  dr’dr, dr,dr,dr, v * ~ ( t , ) G ~ ( t , - f ) q * ” ( t , ) G ~ ( f ~ - f )  ( 6 h l  

x D,,P”[dt),  d t ’ ) l G ; ( t ’ -  G v m ( W i ( t ’ -  tJn.,(tJ . ( 8 7 )  1 
In  (87)  the four-fermion vertex is given by 

D,,P”[s(r), d t ’ ) l  
ih 
2 

= S( t -  f‘)R,,pa[q( f ) ] + -  R m y h d [ q ( t ) ] G ~ ( t -  t‘)G;(t - t’)R,?’[q(t’)l 

X G“,(t”- t ‘ )G$(f”-  t ’ )R., ,”’[q(t ’ ) ]+,  . . . (Bg) 
This vertex is shown diagrammatically in figure 2. It should be noted that the process 
of solving the recurrence relations for the Green functions can be carried out iteratively 
to obtain the N-point fermionic generating functional. Hence the formal solution 
of the Dyson-Schwinger equation would be the infinite product Z,,[v*, 771 = 
,n:~ z!?)[?*, 71. 
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