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Abstract. I show how to obtain the kernel for arbitrary fermion sectors in supersymmetric
quantum mechanics by applying standard coordinate space functional integral techniques
to the coherent state fermionic path integral.

1. Introduction

The path integral has played an important role in the development of quantum field
theory and other branches of physics [1-3]. While the theory of the bosonic path
integral is well defined, the fermionic path integral is generally not so well defined.
Usually one evaluates these fermionic path integrals formally by solving an eigenvalue
problem using appropriate boundary conditions and using the eigenvalues to define
a determinant.

In this paper I will show how standard coordinate space functional integral
techniques applied to the coherent state fermionic path integral [4] leads to physically
important results, such as the fermionic propagator, and to the evaluation of deter-
minants without solving the corresponding eigenvalue problemt. I apply these results
to supersymmetric quantum mechanics [6]. For supersymmetric quantum mechanics
on a curved manifold (the supersymmetric nonlinear o-model 7)) there is a four-
fermion interaction term, and the path integral is no longer simply a determinant.
Nevertheless, the functional integral techniques will be able to deal with this four-
fermion term and, of equal importance, I will be able to write the short-time kernel
which propagates solutions of the Schridinger equation for any fermion sector, and
not just for the zero and full fermion sectors which has been done previously [8-10].

The paper will be organized as follows. In section 2, I give a general discussion of
the quadratic fermionic path integral. I then apply the results to supersymmetric
quantum mechanics on a flat manifeld. In section 3, I treat supersymmetric quantum
mechanics on a curved manifold. I show how to obtain an approximate fermionic
generating functional which allows one to deal with the four fermion term, and from
which one can obtain the short time kernel and the *top form’ for the evaluation of
the Witten index.

+ For a similar discussion of the fermionic path integral see [5].
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2. The quadratic fermionic path integral

In this section 1 show how to apply standard coordinate space functional integral
techniques [11] to the quadratic fermionic path integral. I then apply these results to
supersymmetric quantum mechanics on a flat manifold, and find that one can propagate
all of the supersymmetric states from the different fermionic sectors.

By way of introducing my notation I reproduce some standard results for the
fermionic generating functional. Consider a general quadratic fermionic path integral
with fermionic sources n**(t) and n,(r). The fermionic generating functional is

Z[n*, n]=J D[¢*1D[#]

Xexp{ J dt [w*" ( d% 85— Af - BE,,q“) e+ 7Y+ .p*“nan.
{2.1)

Consider a fermionic generating functional Z, which is the path integral (2.1) in which
A? =0 and B%,=0. By considering solutions of the resulting classical equations of
motion which have retarded boundary conditions, i.e. o, {t) =i [d¢' 0(t = '), (¢'), then

1
Z[n*, n]o—em(——.[ dede' n* ()6t - 1')n, (1 )) (2.2)
It then follows that Z[n*, 5] can be obtained from Z[n*, n], in the following fashion:

Z[n*, n]—eXP[*;J'dr(df*“[A”ﬁ“Bm,q"]dfﬂ)] [(n*, nl (2.3)

where

cacn 8 8
g* (x)w( lﬁana(f)) and (r) ( —_ﬁn*ﬁ(t))

Carrying out the expansion in (2.3) we obtain the general expression for the quadratic
fermionic generating functional of (2.1)

(2.4)

n*=n=0-

1 r
Z[n*, 1] =CXP(—; j dede’ p** (O F(t— 1), (¢ ))
In (2.4} F,,(1 -t} is the fermionic propagator and has the following formal expressiont:

Fii—1)=0(- T')T(EXP J‘ ’ dr {-iAilq{1)] —iB,'iu[q(h)]é"(h)})- (2.5)

By setting 5™ = nr=y=o Can be expressed as a
determinant (with retarded boundary conditions) which is

Z[”]*, n]ln‘=ﬂ=0= det

(i '3; 3'2 - Ag[q(t)] - Bﬂt,[q(;)]q") 5(t—1r)

i h h K’ )]
= —_ _ n+_ Brx -r!+_ “UBE Bap i 2.6
exp[ﬁjdr(z AL 5 Bard" T8 B (2.6

1§ am using the notation ¢** =[e*]* if any indices remain uncontracted.
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This shows that one can calculate determinants without solving the corresponding
formal eigenvalue problem. It should be noted that in obtaining (2.6} I used the fact
that for quantum paths the correlation (0| T4* ()" (t)|0)=ihg**[q(#)]8(t—¢"), and
also the following two identities: #(tr—¢)8(¢'—¢) =0, and #(0}=1.

Having obtained the generating functional for a general quadratic fermionic path
integral, I will use it to propagate states in the different fermionic sectors of supersym-
metric quantum mechanics. Before doing this I will review supersymmetric quantum
mechanics on a flat N-dimensional manifold [6] and find the Schrodinger equation
for the supersymmetric states. The Lagrangian for supersymmetric quantum mechanics
on a flat N-dimensional manifold described in Cartesian coordinates is

L= %nﬂbq.a ;° _%nﬂb(aav)(abv) + d]*a (1 % 62 - nbraaa('v) "b”' (27)

Upoii quantization, the S‘uperS}"i“l netric Hamiltonian is
H=3n"P P, +30"(2,V) (@, V) + 17(0,0.V) G, —3hp™*).  (28)
The supersymmetric states on which the Hamiltonian acts are of the form ¥{g{¢}]=
Ay e, [q(r)]w*" q'f*“ |0y, where d:*"' and q’;,,kare creation and annihilation operators
and |O) is the fermlomc vacuum for which !}'Iall()) 0. If p is even (odd) then the
supersymmetric state is a boson {fermion). The Schrodinger equation for the supersym-

metric states is
2

# #
iﬁa‘Aﬂ‘|~-~"‘n = (_? nabaﬂah +%nab(aav)(abv) —5 nab(aaabv))Aal...uP

P
+h Z nab(aalabV)Aal...a,\_laaaﬂ...a,,' (2-9)

Note that for the zero fermion sector the Hamiltonian is diagonal in tensor indices
and the propagator for the zero fermion sector is

i h
J Dlq] exp[";;J' df(%nabé"q'h —%n“b(BaV)(BbVHE n""(ﬂaabv))]. (2.10)

For the general p-fermion sector the Hamiltonian is no longer diagonal and my
motivation was to find the generalization of (2.10) which will allow one to propagate
supersymmetric states from any fermionic sector. The kernel for the propagation of
supersymmetric states can be obtained from the fermionic generating functional as
follows:

Aga g tr]= [ dgq Kﬁififﬁ(qs Iy Go, 1) Ag,..p,[ 40 to]. (2.11)

In the above expression the kernel K& al al(q, Ir] go, ty) is the path integral
q
Ko

- "p(q, ff, Go, ro) I ]:)[q]AJQ,I i, exp[ﬁ I dt LB:I (212)

da '

where Lp is the bosonic part of the supersymmetric Lagrangian, and

1 8 8 8
M5 = (—ih )...(—ih )(—iﬁ——)
B 25 81,010 8N, (1) n* (1))

()

{2.13)

wr=n=0-
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Thus once one has the fermionic generating functional for supersymmetric quantum
mechanics one can use (2.11)-{2.13) to propagate solutions of the Schrodinger equation
for any fermionic sector. Note that for the quadratic fermionic path integral there is
no self-interaction of the fermionic propagators and hence one has the following
factorization:

BB — * A Bl ~
Mall...crlA,Bl...,Br, - Z[T’ ] n]ln"'=n=0Fa1|('rf_ '0) e Fa;,(rf tQ)A,Bl.A.,G,.- (2-14)
Nna armeat tha Fan EBifé _ $ Y ne ernmnmatine tha Alcaoain
wiie <an uump:m ine ICrinionic plupasatu Ly = fp) a3 propdgatifig i€ giscrele

index B, at time t, to the discrete index «, at time 1.
Returning to the supersymmetric quantum mechanics of (2.7), the fermionic generat-
ing functional is

Z[n*, n]*em(—ljdtdt n* () F. (r—t)m(r))

xexp[. fdf(ﬁ ""(aaa,,V))] (2.15)

where the fermionic propagator is
Fi(i—ty=6(t- r'_)Tl[:exp Jf dt!{-in""(aga_rV)}]_ (2.16)
.

To show that (2.11) does in fact lead to the Schrodinget equation, perform the standard
technique of expanding the path integral to first order in time for an infinitesimal time
step [1,12]. 1 will given an explicit example; for ease of calculation I choose the
one-fermion sector A,[¢g(r)]. Expanding to first order in time

r AN A . r: I
a" Ag i 1 uq "-‘q
— _— _AI a
Ao’[q, t] J (211'if1AI)Nj2 exP!_h (2 Nab™y ) Ar At )J
X (1 —ﬁ A (3, V)3, V) +';_ Amah(aaa"v))

X (85 —in™A1(3,8.V)) A:d g, t] (2.17)

which can be shown to satisfy the Schrédinger equation (2.9) when the results of
appendix A are used.

1 end this section by considering the supersymmetric quantum mechanics given by
the Lagrangian

L=3g,.4"¢" +w*“(|_a —ir:,.¢" \w (2.18)

54 ety

This is equivalent to the supersymmetric system of (2.7) in which the superpotential
has been set to zero, and a curvilinear coordinate system is used instead of the usual
Cartesian coordinates. From (2.5) and (2.6)

[a(t)4" (1) (2.19)

and

i iR . R N
Zin*, nllran-0= exv[;jdr(gqu“——g"g“ rers )] (2.20)
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By expanding to first order in time (using the results of appendix A) it can be shown
that (2.11) leads to the Schrodinger equation
2

. AT
iha, Ay, 0=~ 8"V, 7, A (2.21)

TR P

3. The quartic fermionic path integral

The supersymmetric nonlinear o-model in (0 —1) dimensions [7] is an example of
supersymmetric quantum mechanics which contains a four-fermion interaction term.
Therefore the fermionic propagators will no longer factorize as in the quadratic theory,
and one can no longer equate the fermionic path integral with a determinant, as is
usually done in the quadratic case.

In this section I show how to develop the standard coordinate space functional
technique of section 2, to deal with the quartic fermionic path integral. T will be able
to find a short time approximation for the fermionic generating functional, from which
one can obtain solutions of the Schrédinger equation in any fermion sector, by use of
the formalism of section 2. I will also show that one can obtain the Witten index from
this short-time fermionic generating functional.

To start with I give the Lagrangian for the supersymmetric nonlinear o-model and
outiine how to abtain the appropriate fermionic generating functional Z,[%*, n]. The
Lagrangian for the supersymmetric nonlinear o-model is

- d v T ey *a *
L=%gm:¢i#qp+ (f’*# (l a Sp. —lrf.ulq ) lybv+§lRaByalp 'f/B‘J’ 71!’5- (3])

The fermionic generating functional Z_,[7*, 7] can be obtained from the fermionic
generating functional for supersymmetric quantum mechanics on a flat manifold as
follows:

Z,In* 7] =exp(§ J df(%RaByﬁlﬁ*a‘;p*f;*Tlﬁa))Z["T*, 7] (32)

where

cear (s P e oin—2
w=(-ngln) o o=(sng )

and Z[n"*, ] has contributions from {2.19) and (2.20}. In a straightforward manner

Z[n*, nllyecn=o= f D{¢*]D[ ] exp[% J’ dt LF}

i i L h’
=exp[%J.dr(zr:“q*‘—?g“'rﬁar:,ﬁ? R)] (3.3)

where L is the fermionic part of the supersymmetric Lagrangian equation (3.1). The
kerne! for the propagation of the zero-fermion sector is given by

J D[q] exp[% J‘ dt(%gp.,é“é")] Z,[n*, 7]

This is exactly the kernel for a non-relativistic point particle moving on a curved
manifold [13]. Therefore the zero fermion sector for the nonlinear o-model is a
non-relativistic point particle on a curved background.

o (3.4)
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The fermionic generating functional of (3.2) can be expressed as the product of
2j-point generating functionals (see appendix B for notation).

=]

Z[n*, 91=T11 ZP[n* 7l (3.5)

i=1

In appendix B 1 outline how to obtain the different 2j-point generating functionals by
use of the recurrence relations satisfied by the Green functions. In particular it is
argued that one can obtain a physical fermionic generating functional by finding the
first two terms in this product. The argument is as follows: in the Schrédinger picture
we require that the kerne! propagate the solutions of the Schrédinger equation. It is
well known that in the short-time limit one need only keep terms up to order O(Ar1)
in our kernel. Now our generating functional Z'"[n*, n] has lowest order O(A?) (after
the fermionic sources have been removed by differentiation) and thus contributes to
the short-time kernel. For Z[n*, n], where j>2, these 2j-point generating func-
tionals will have lowest order O(At*) where k = 2, and thus they do not contribute to
the short-time kernel. Hence the generating functional can be approximated by the
truncated product

Zn* 1= Z3n*, n1Z70n*, ] (3.6}
where

1
ZP[n*, n]l= exv(—; j drde' n** (Gt - r')m(t’)) Z,[n* 7]
and

ZP[n*, n] =exp(—

I (3.7)

4%! j dede’ de, diy des Aty ™ (1) GE(H— D) * (1) G, — )

\
x D,,[q(1), g(1N]GE (1 — t:)m, (1) Gt - t4)7hr(f4))- (3.8)

It is interesting to note that the identity A{:—t)8{(+'—1)=0 ieads to considerable
simplification of the Feynman diagrams. For example the ‘dressed’ fermionic propa-
gator G% for the nonlinear o-model can be expressed as the sum of propagators F¥
of the quadratic theory given by (2.19) in which one sums over only one infinite series
of loops (see figure 1).

The infinite series can be summed and the fermionic propagator is
!

Gi(1—1)=8(t- r')T[exp j drl(r:a[q(z,)]q'“(:,) -2 R::[q(rl)])]. (3.9)

Also the ‘dressed’ four-fermion vertex D,,*’[g(1), g(¢')] (which is given in (B8) of
appendix B) contains a sum over only one infinite series of loops of the form shown
in figure 2.

—»——@———=—. + O-‘- + O Q‘—'l-"'

Figure 1. Fermionic propagator.

Figure 2. Four-fermion vertex.
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Using the machinery developed in section 2, and the fermionic generating functional
Z,[n*, n]=Z3[n*, 212 n*, 0] the Schrodinger equation for the supersymmetric
wavefunctions is found to be equivalent to the Laplacian acting on differential p-forms,
which is the geometrical interpretation of supersymmetric quantum mechanics [7].
That is, the Schrédinger equation is

. '’
h0,A,.0, =3 (d+ 8V Aq, o, (3.10)
where (d +8)? is the Laplacian acting on differential p-forms given by [14):
(d+8)°A,, .«
p
= FngV#VVAa1...up+ Z R:;,‘Aa‘...ak_luaa.;_h._up
A=1
17 P
+- E z anm,‘u,Aa]...a—,\u,ua,\+|...a,_|vrx,.,.l...a,,' (3'11)

2A=l =1

In {15,16] it was shown that the Witten index Tr(—1}" can be regularized by a
supersymmetric path integral in imaginary time, where both the bosonic and fermionic
path integrals have periodic boundary conditions. I will show that for a two-dimensional
closed compact manifold, the truncated fermionic generating functional Z,[n*, n] =
ZPn*, 9125 [ n*, ] can be used to regularize Tr(—1)". Thus

1
Tr(—l)F=J Dlg][M - M+ M. ] exp(—;J- dt(%gwq'“é"))- (3.12)

In the above expression the bosonic path integral has periodic boundary conditions,
and is over imaginary time. Also note that I have explicitly taken the trace for each
of the fermionic sectors; the minus sign for the one fermion sector is due to the operator
(—1)F. One can use the standard arguments to find the major contribution to the
imaginary time path integral with periodic boundary conditions [1,2]. The major
contributions will come from the stationary paths. Thus

d2q g1/2

(2wikAL)
In (3.13) the tildes indicate that 4" has been set to zero in the fermionic propagator
G (t—1') of (3.9) in accordance with the above result that the major contributions
are obtained from the stationary paths. Now Tr(—1)" is a topological invariant; hence
in (3.13) one can perform a short-time expansion and look for the time-independent
term, giving

Tr(-1)F = [N — M5+ Mo (3.13)

1
Tr(_l)Fzg_n‘ saiuzsﬁlﬂz J- dzq glf,zRulﬂzﬂl’Bz (3'14)

which (up to a sign) is the Gauss-Bonnet-Chern-Avez formula {17] for the Euler
character of a closed compact two-dimensional manifold.
To generalize the above calculation from two to N dimensions one has

r_(_dYsg
Tri=1) ‘J (2mihAr)

Of course to show that (3.15) does indeed give the correct Euler character one would
have to calculate the different 2j-point generating functionals and show that to order

1/2

M =M+ MO~ M+ + Mool - (3.15)

wyas
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O(A1™7?) that all the terms cancel except for the topological Euler character. This
would be very tedious, but would constitute a proof of the index theorem for a De
Rham complex.

Instead of the above generalization to N-dimensional manifolds 1 would like to
present the following heuristic generalization. Note that Z')"[ n* ] contains the ‘top
form’, to be explained below. So Z!¥T°?[n*, 5] will be the only fermionic generating
functional required to obtain the Euler character. The fermionic generating functionals
can be expanded in powers of the short time At and in powers of . However Tr(—1)F
is a topological invariant and is independent of both Ar and #, hence one can choose
to expand the fermionic generating functionals in the short time At keeping terms up
to order O(Ar) (after the fermionic sources have been removed by differentiation).
Thus as before the infinite product becomes truncated and Z,[5* n]=
Z I n*, p1ZP[n* n]. Next perform a small # expansion to obtain

B

Zﬁf’[n*, n}- exp(‘-% j dedt’ p**()e(r— r')n“(t’)) (3.16)
and

ZP[n*, n]- ZP™P %, 0]

:CXP(—ang drdn deadrsdt, p* (1008, — O™ () 0(6— 1)

X Ra,P2Lq(0]0(¢ — 1) (1) 0(1' ~ 74)715(T4))- (3.17)
It then foliows that

dgg'”? 1 [ NS 5 _ 5
(=0= ) Grinan™ Noad LA o\ T P e )

x ZZP(0*, 9]0 = -0 (3.18)

where one performs a short-time expansion and lock for the term independent of both
At and h. This leads to the result Tr(—1)"=(~1)"y(M’"), where N =2m is the
dimension of the closed compact manifold, and x(M?"} is the Euler character, given
by the Gauss-Bonnet-Chern-Avez formula

(-1)"
XM = e | VO™ B,
X K 8,8, R B8, (3 '19)
a7 A T N N

In conclusion | have shown how the fermionic generating functional obtained from
the fermionic path integral can give the physically important quantities. When applied
to supersymmetric quantum mechanics on a curved manifold one can deal with the
four fermion interaction term and obtain the fermionic propagator, which leads to the
kernel for any fermion sector.
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Appendix A

In this appendix I shall give the Schrédinger equation associated with the path integral.
I follow the standard procedure [1, 12] for expanding the path integral to first order
in time for an infinitesimal time step. It is known that the path integral is the continuum
limit of the mid-point discrete path integral, and that the mid-point discrete path
integral corresponds to a Weyl ordered Hamiltonian [18]. Thus expanding a path
integral to order O(At) gives the general form

d"Aqg"(g)  [i . (1 Agag
¥ia 0= Gmsanr el par3e @ )]

x(1+ifAM(¢7)Aq” _%3(3) gy, ta) (A1)

where as usual At=1t—1,, Ag* =g* —q5, and A,(4) means that the function A, is
evaluated at the mid-point 3g+3g,. By a standard expansion technique [1, 12] the
expression in (Al) is seen to lead to the Schridinger equation

iha W =HV¥ (A2)
where the Hamiltonian is Weyl ordered and has the form
H=[3g""P,P,Iw+a[P,g""A,]w +BC. (A3)
[ lw is used to represent the Weyl ordering of operators and, in particular,
[%gﬂ-”PﬂPV]“!=§.Pupyg#“+§.gﬂ"PAPp+zl .ugj-wpu
' ' (A4)
[P,ug#yAv] w :%P,ug“uAu +_2lg#VApr.

A useful application of the above, which is used many times in the paper, is the
expression of the form

d¥aqg"*(q) i _ Ag* Ag”
Vg, f]=J.W6XP ;At(ég,w(fﬂ Al _A?)

if ih ) arf w*y
X [1 Y (—?) Il(3Aag" —== (—?) - A

1At
#

(2)grtimy]
re g ryy »3 ‘P[CIU: t()]' (AS)
A8/ J
This leads to the Schrodinger equation

: 1 _ pv iﬁ BUT A

iho ¥ =32 P#P,,A-k?g r..pY¥ (A6)
where the identity

2 2

ﬁ o [} h i 14 ® 1 o
E‘[g“‘rﬂ.ruﬁ—R]=§‘[(6p8pg“ )+gM Tl +2(0,84 TS (A7)

has been used.
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Appendix B

In this appendix I will derive the fermionic generating functional from which one can
obtain the kernel for the propagation of solutions to the Schrédinger equation. For
supersymmetric quantum mechanics on a curved manifold there is a quartic fermion
interaction term, therefore the fermionic propagators will no longer factorize as they
do for the Gaussian theory.

One can obtain the appropriate generating functional by considering the classical
equations of motion satisfied by the generating functional, i.e. the Dyson-Schwinger
equation. | do not solve for the generating functional which satisfies the Dyson-
Schwinger equation, but instead obtain an approximate generating functional by solving
the first two recurrence relations for Green functions which are obtained from the
Dyson-Schwinger equation by differentiating with respect to ™ and 5 at ¥ =75 =0.
1 will show that up to first order in time (all that is required to for the short time
propagation of solutions to the Schrédinger equation) only the four-point fermionic
generating functional is required.

The first recurrence relation for the fermionic Green function is

B 58 .
(‘”'an,(ro))[(sw*“(r))o,f” “’]

Where in (8S5/8y*"(1)),, the fermionic variables are replaced by the operators
(—1#58/8m,) and (—1h8/8n*") and is explicitly given by

55 df{ ., & . i f ip 8
(aw*“(r))of &7(_”’617***(:))_‘F““[““)]" (’)( m3n*"(1))

(s} v
i, o -in g ) (v () o9

Its solution is the two-point fermionic generating functional

'q"=17=0=0‘ (Bl)

ZP a5y =Z, %%, il oexp\—} Jf de dt’ 9**(1}G {1~ ')y (:’)) (R3)
o * < * ﬁ l-‘
where the fermionic propagator is given by
_ ' , . it
GLlt—t)=06(1- t')T[exP j dtl(l“:m[q(ll)]q ()-= R‘:[q(n)])] (B4)
.

and Z7[5*, n]|,~an=o is given in (3.3).
The second recurrence relation for the Green functions is

LB L8 L 5S ”
(“"an*m(rz))(“"6170(:.))(””’an,(ro))[(w*“(r))up*"” (‘)]

X Z,[ 0%, 7]lemrmo=0. (B5)

The solution of this Green function equation will contain a four-poeint fermionic general
functional. The solution of the Green function equation (B5) is the required fermionic
generating functional that can be used to obtain the kernel for the Schrédinger equation.
The generating functional has the form

Z,[n* )= Z3[(n*, n1Z(n*, 7] (B6)
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where the four-point functional is

1
Z[n*, 1] =—'GXD(—E J‘ drdr' de dt dey deg w* (1) Gt — )™ () Gl — 1)

x D, °Lq(1), ()]GE (1" - 13) 7, {6} GE (1" - r4)n,,(ta))- (B7)

In (B7} the four-fermion vertex is given by

D..”’[q(t), g(1)]

=8(1-1")R.,"[q{1)] +% R, [q(0]Gh(1—1)Gi(t — )R [g(1')]

R, Ta(e)]
— ; t’
5 fac q

X GE"—1)VGL(" = )Ry gl ]+ .. .. (B8)

This vertex is shown diagrammatically in figure 2. It should be noted that the process
of solving the recurrence relations for the Green functions can be carried out iteratively
to obtain the N-point fermionic generating functional. Hence the formal solution
of the Dyson-Schwinger equation would be the infinite product Z,[n*, n]=
Oz, Z¥9*, nl.

At T .
+ | e Ry T(0)GR( = 1) Gl = 1)
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